Friday, 14 February 2025

Agent Demo

1. Basic Agent

## Basic Agent
from agno.agent import Agent, RunResponse
from agno.models.ollama import Ollama

agent = Agent(
    model=Ollama(id="llama3.2"),
    markdown=True
)

# Print the response in the terminal
agent.print_response("What is Ministry of Corporate Affairs in India?
what it does?")



Response:




2. Web Search Agent

## Agents with Tools
# Pip install phidata, duckduckgo-search, arxiv
from agno.agent import Agent
from agno.models.ollama import Ollama
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.arxiv import ArxivTools

agent = Agent(
    model=Ollama(id="llama3.2"),
    # tools=[DuckDuckGoTools()],
    tools=[DuckDuckGoTools(), ArxivTools()],
    show_tool_calls=True,
    markdown=True
)

# Print the response in the terminal
# agent.print_response("What do you think of the Latest news on
US deporting migrants.")
#agent.print_response("Give me some latest news
in Indian Politics.")
# agent.print_response("What is 23+89.")
agent.print_response("Search arxiv for 'Reinforcement Learning")


Response:


3. Chat_Agent :

#pip install pydantic requests streamlit ollama

import streamlit as st
from pydantic import BaseModel
import ollama

# 🎭 Define AI Agent
class AIAgent(BaseModel):
    name: str = "OllamaBot"
    version: str = "1.0"
    description: str = "A chatbot powered by Ollama LLM."

agent = AIAgent()

# 🛠️ Streamlit UI
st.title("🤖 iMMSS LLM for Legal Assistance")
st.write("Ask anything! (Type 'exit' to stop)")

# 🎤 Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# 🚀 Display chat history
for msg in st.session_state.messages:
    st.write(msg)

# 🎤 User Input
user_query = st.text_input("You:", "")

# 🧠 Function to get AI response
def get_ai_response(question: str):
    response = ollama.chat(model="llama3.2", messages=[{"role": "user", "content": question}])
    return response["message"]["content"]

# 🚀 Process User Query
if user_query:
    if user_query.lower() == "exit":
        st.write("👋 Chatbot: Goodbye! Closing chat...")
        st.stop()

    # Get AI response
    ai_answer = get_ai_response(user_query)

    # Append user and bot messages to session state
    st.session_state.messages.append(f"**You:** {user_query}")
    st.session_state.messages.append(f"**{agent.name}:** {ai_answer}")

    # Display AI response
    st.write(f"**{agent.name}:** {ai_answer}")


Response:

















No comments:

Post a Comment

Deep Seek in colab

 Sure! Here’s your blog post in a funny and engaging style. 🎉 🔥 DeepSeek in Google Colab – The Ultimate Hacker’s Guide! 🔥 "Beca...